科普

数学的起源历史是什么

科技知识曾扬供稿

  数学是很多人都要学习的知识,那么你想要知道数学的起源吗?小编就和大家分享数学的起源历史,来欣赏一下吧。

数学的起源历史是什么

  数学的起源历史

  埃及是数学的古国, 被人们认为是数学产生的最早国家之一。因此,在研究数学历史的时候,必须提及埃及的数学。

  埃及位于尼罗河岸,在古代分为两个王国,把夹在两个高原中间的狭长谷地叫做上埃及,把处于尼罗河三角洲地带叫做下埃及。这两个王国经过长时期的斗争,在公元前3200年实现了统一,并建都于下游的孟斐斯(Memphis)。

  尼罗河经常泛滥,淹没良田,而统治者需要征收,重新丈量土地。实际上,埃及的几何学就起源于此。希腊的历史学家希罗多德(Herodotus约公元前484 —424)在《历史》一书中明确指出:“塞索特拉斯Sesostris)在全体埃及及居民中间把埃及的土地作了一次划分。他把同样大小的正方形的土地分配给所有的人,而要土地持有者每年向他缴纳租金,作为他的主要税收。如果河水泛滥,国王便派人调量损失地段的面积。这样,他的租金就要按照减少后的土地的面积来征收了。正是由于有了这样的做法,埃及才第一次有了几何学。”

  世界数学发展史

  奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικός(mathematikós)意思是“学问的基础”,源于μάθημα(máthema)(“科学,知识,学问”)。

  数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。

  更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。

  从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。

  到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

  数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”

  数学的萌芽

  原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。

  西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。

  商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

  公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、御、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

  春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。

  战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。

  而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。

  墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。

  名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。

    为你推荐